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Glycolic acid (hydroxyacetic acid) crystallizes in P2;/c with a=89649, b=10-5634, c=7-8261 A,
f=115-083°, at 24+ 1°C, with Z=8. The structure was solved directly from single-crystal neutron
diffraction data by the ‘squared structure amplitude’ method followed by symbolic addition and
Fourier synthesis. The structure consists of a loose three-dimensional hydrogen-bonded network of
two closely similar but crystallographically distinct types of molecules. Averaged interatomic distances
corrected for thermal effects deduced from a rigid-body motion analysis are C-C=1-517, C-O(H) in

—COOH=1-326, C=0=1:226, C-O(H) in —CH;OH=1-420, C-H=1116

A. Averaged O-H dis-

tances, corrected with the ‘riding model’ formula, are 1-009 in the carboxyl and 0-993 A in the a-hydroxyl
groups. With the exception of the aliphatic and a-hydroxyl hydrogen atoms, each molecule is nearly
planar. The structure explains the nearly orthorhombic symmetry of the electron spin resonance

spectrum of irradiated glycolic acid.

Introduction

Glycolic acid (hydroxyacetic acid) is the simplest mem-
ber of the a-hydroxycarboxylic acid series. Crystal
structyre studies have been carried out on relatively few
members: the dicarboxylic acids tartronic (Van Eijck,
Kanters & Kroon, 1965) (HOOC-CHOH-COOH), tar-
taric (Okaya, Stemple & Kay, 1966) (HOOC-CHOH-
CHOH-COOH), and dihydroxyfumaric (Gupta &
Gupta, 1968) (HOOC-COH=COH-COOH); the tricar-
boxylic acid citric (Johnson, 1966; Glusker, Minkin
& Patterson, 1969) (HOOC-CH,~COHCOOH-CH,~
COOH); and acid salts containing the bisglycolate ion
(Goli¢ & Speakman, 1965; Van der Helm, Glusker,
Johnson, Minkin, Burow & Patterson, 1968) (HOOC-
CH,~-CHCOO~—CHOH-COOBHR). Glycolic acid affords
a favorable case for observation of the dimensions of
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the > COHCOOH group, some of which seem rather
variable from member to member: C-C from 1-502 to
1-544, C=0 from 1-198 to 1-24, C-OH (carboxyl) from
1-28 to 1319, C-OH (a-hydroxyl) from 1-39 to 1-426 A.

A study (Atherton & Whiffen, 1960) of the electron
spin resonance spectrum of y-irradiated glycolic acid
revealed an interesting pseudo-symmetry; the authors
proposed an orientation in the crystal of the glycoly!
radicals produced by irradiation, and by implication
that of the parent molecules. The present study permits
testing of the suggested orientation and provides an
explanation of the pseudo-symmetry.

Some results of the present study have appeared in
preliminary form (Levy & Ellison, 1967; Ellison &
Levy, 1967, 1968).

Experimental

The space group of glycolic acid was determined to be
P2,/c by Hughes & Small (see Atherton & Whiffen,
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1960); these investigators found that the asymmetric
unit contains 2 independent molecules. We have re-
determined the unit-cell parameters with greater ac-
curacy from the diffractometer settings of 12 Bragg
reflections in the 26-range 87-156° (Cu K« radiation,
A=1-54051 A, temperature 24+ 1°C). The results, in
agreement with those of Hughes & Small within the
quoted errors, are a=38-9649 (6), b=10:5634 (7), c¢=
78261 (7) A, p=115-083 (5)° (least-squares standard
errors in the least-significant digits are in parenthesis).
With 8 molecules in this unit cell, the calculated density
is 1:5056 g.cm—3; the density measured by flotation of
a single crystal in tetrachloroethane-mineral oil is
1-51 g.cm—3,

Pijper (1970) has recently determined the structure
of glycolic acid by X-ray diffraction. The unit cell upon
which his description is based is apparently related to
that of the present authors by the transformation
A=-a—-¢,B=-b, C=c.

For neutron diffraction measurements, a large crys-
tal from a commercial preparation was shaped to an
oblate ellipsoid of revolution with principal diameters
of 0-346 and 0-468 cm and weight 64 mg. Measurements
0f 2991 Bragg reflections were made with the Oak Ridge
Automatic Neutron Diffractometer (Busing, Smith,
Peterson & Levy, 1964) at a neutron wavelength of
1-078 A. Of these, 24 corresponded to the absences of
P2,/c (h0l, I 0odd) and had zero intensity within experi-
mental error. The remainder corresponded to 2349
non-extinct, independent, symmetrically nonequivalent
reflections of which 2109 were non-zero. The data
were corrected for absorption (linear absorption coef-
ficient 2-11 cm~!), and reduced to squared structure
factors in the usual way (Brown & Levy, 1964). A
Wilson analysis (Wilson, 1942) of these data yielded
an average temperature factor coefficient B=3-11 A2,

Solution of the structure

The solution of the structure was first attacked un-
successfully by computation of the gradient-sharpened
(Jacobson, Wunderlich & Lipscomb, 1961) Patterson
function, and its analysis by means of multiple impli-
cation (symmetry minimum) diagrams and superposi-
tion diagrams, following a procedure that was suc-
cessful in the solution of the structure of potassium
hydrogen chloromaleate (Ellison & Levy, 1965) from
neutron diffraction data. Although some 16 super-
positions were made on prominent peaks of the im-
plication diagram, the solution to the structure was
not forthcoming. The reason for the failure of the
method became clear after the structure was solved:
some important peaks were ‘missing’ from the Pat-
terson function because of cancellation of positive and
negative interactions. This cancellation is a difficulty
peculiar to neutron diffraction from crystals containing
both negative- and positive-amplitude scattering cen-
ters, and is especially important for those with a high
proportion of hydrogen atoms. In this case there are
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8 hydrogen atoms out of 18 atoms in the asymmetric
unit; in potassium hydrogen chloromaleate, there are
only 2 out of 12.

The assumption that the scattering density is every-
where non-negative underlies not only the usual
schemes for interpreting the Patterson function, but
also the direct phase-determining relationships utilized
in the symbolic addition method (Karle & Karle,
1966). Hence, symbolic addition should not be expected
to succeed in the present instance if applied directly to
the neutron structure factors. A way of circumventing
this difficulty suggested by Karle (1966) is referred to
as the ‘squared scattering amplitude method’. Briefly,
from a set of pseudonormalized structure-factor
magnitudes |ep| derived from neutron measurements,
there is derived a set of quantities

, <=1 (g_—1>
a=1+Eh7-D (k<(8f’z—h1)§>k) :

» ()
where f§,= > f7 with j ranging over the atoms in the
J

unit cell; the |ey} are approximations to a set of pseudo-
normalized structure factor magnitudes for a structure
with the same atomic arrangement as the experimental
one, but with all atomic scattering amplitudes squared.
The relation is most likely to be reliable when both
ley) and |eg| are large. Since for this fictitious ‘squared
scattering amplitude’ structure the scattering density
is everywhere positive, symbolic addition, and perhaps
also methods based on the Patterson function, should
be applicable.

In the present work, equation (1) applied to the
experimental set of 2349 values of ¢, yielded a set of
239 values of ¢, > 1; of these 215 had also &,> 1. The
symbolic addition procedure was then applied using
the computer program PHASER (Ammon, 1964;
Ammon & Jensen, 1967) with 3 signs arbitrarily chosen
to fix the origin and 2 more assigned in 4 combinations.
The two combinations judged best (greatest number of
signs determined and fewest inconsistent sign indica-
tions) had 222 and 220, respectively, determined signs.
A Fourier synthesis was prepared with each of these
sets; one was interpretable in terms of the expected
molecular shape. It showed peaks for all the C and O
atoms in the structure and contained only one false
peak large enough to be troublesome. No peaks
assignable to hydrogen atom positions appeared; since
the squared scattering amplitudes for H and C are in
the ratio (—0-378)2:(0-661)2=0-325:1, and because
hydrogen peaks should be further reduced by greater
thermal amplitudes, their absence is not disturbing.
Of the 222 terms used, 217 proved to have correct
signs when checked against the final model.

A weighted Fourier synthesis was next computed
using structure factor magnitudes derived from the
neutron diffraction measurements, signs as given by
the C and O positions, and weights (Woolfson, 1956) of

tanh (| Fol | F2l/32 /)
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in which fu was corrected for the overall thermal
motion as given by the Wilson analysis. This diagram
displayed all eight hydrogen atoms in the asymmetric
unit and thus completed the solution of the structure.

Refinement

The structure was refined by the method of least
squares, in which >w(F2—S?F2)2 was minimized.
Weights w were set equal to the reciprocal of the
variance of the observation, which was estimated ac-
cording to usual practice (Brown & Levy, 1964) as

aglalistical+(0'03 F2)2 »

0% iaica DeINg derived from the application of Poisson
statistics to the counting data. As refinement proceeded,
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it became clear that the two strongest reflections were
severely reduced by extinction, and that some 63 others
were noticeably affected. These were first omitted from
the refinement; in the final stages, the alternate pro-
cedure of applying an extinction correction was
adopted. In order that the parameters of this correc-
tion might be properly adjusted by the method of
least squares, the correction was applied to the calcu-
lated values in the form

Fcz:orrecled = Fgalc(l - qu + qZQZ) s

in which Q is defined to be FZ2,,/sin 26, and F,,, is the
uncorrected calculated structure factor. This correction
is equivalent to that derived by Zachariasen (1965)

P, . 4 Py —
1— 2 : 02— ..
P, £10+ 33 P, 8:T72Q

Table 1. Calculated and observed structure amplitudes

The columns contain the Miller index 4, the quantity 100Fcaic,

the quantity 100]|Fops| adjusted to final scale and corrected for

absorption and extinction, and the quantity 1006(| Fobs|) = 1000(Fons2)/2| Fobsl, or, in the entries flagged W, the quantity 1006(Fobs2).
The flag E indicates that the extinction correction on Fons? exceeds 1-05. The reflection 641, flagged X, was deemed to have a
gross error in measurement, and was omitted from consideration.
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if the polarization factors P, are set to unity (as is
appropriate for neutron scattering), the identification
_ VR —
a1=&1T, q,= TVii_ngz
is made, and terms of higher order in Q are ignored.
Thus our form assumes that T and T2, Tr=(—1)"
(1/4)dnA/dun, where A is the transmission factor as a
functionof the linear absorption coefficient, are indepen-
dent of the orientation of the crystal and the scatter-
ing angle, an assumption that is plausible in the pre-
sent case. This correction was highly successful in that
all observed intensities were brought into satisfactory
agreement with calculation. The most severe correction
factor is 0-6241.

Table 1 lists values of the calculated and observed
structure factor magnitudes. The latter have been cor-
rected for absorption and extinction and placed on the
final scale. The errors listed are values of 6( F2,)/2 F ops
except for the weakest reflections, flagged with the
symbol W, for which a(F2,,) is listed instead ; 6(F2,) is
the standard error corresponding to the least-squares
weight. Table 2 lists the final parameters of the struc-

ture. The agreement achieved is indicated in the fol-
lowing table:

Reflections Number R(F) R(F2) o]
All* 2348 0-092 0-056 1-07
F2> g(F2) 1748 0-060 0-051 1-18

o1= 2w(F2p—S?F2,.)?/(N—P) where N is the num-

* One reflection, 641, judged to be a gross error in measure-
ment, has been omitted; see Table 1.
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ber of reflections in the group and P=167 is the num-
ber of parameters fitted by least-squares (54 positional
coordinates, 108 coefficients of the anisotropic tempe-
rature factors, 1 scale factor, 2 extinction correction
parameters, and 2 atomic scattering amplitudes).

Description of the structure

Fig. 1 shows stereoscopic drawings of individual mol-
ecules of glycolic acid, along with the atoms of neigh-
boring molecules to which they are hydrogen bonded,
viewed in a direction 25° to the normal to the plane of
the carboxyl group. The interatomic distances shown
in this Figure have not been corrected for effects of
thermal motion. Bond angles are given in Fig. 2. The
two molecules are closely similar, both in dimensions
and in conformation. The bond distances and angles
are all within the range of the better determined values
from previous studies of similar molecules, and none
is in disagreement with expected values. The config-

uration of atoms C—C<8 of each molecule is quite

closely planar. There is also evident a tendency for the
acid hydrogen atom [H(11) or H(12)] and the oxygen
atom [O(21) or O(22)] of the a-hydroxy group to lie in
this plane, as indicated by the following conformation
angles:*

* Conformation angle A-B-C-D is defined to be the azimuth

— — —

of CD with respect to BA about the vector BC as polar axis
of a right-handed system; that is, the clockwise angle from the

—_— —

projection of BA to the projection of CD viewed in the direc-
—_

tion BC.

Table 2. Parameters of the structure of glycolic acid

Least-squares standard errors are given in parenthesis.

Fractional position parameter x 104

x y z Bu

C(11) —64 (1) —2448 (1) 2251 (1) 961 (11)
o(11) —1316 (2) — 1886 (1) 897 (2) 1560 (20)
H(11) —1273 (3) —954 (2) 1161 (3) 1664 (34)
o@31) 980 (1) —1877 (1) 3534 (2) 1131 (16)
C(21) —97 (1) —3861 (1) 2006 (1) 1177 (13)
H@31) —1160 (3) —4224 (2) 2162 (5) 1233 (31)
H(41) —273 (5) —4057 (2) 579 (4) 3911 (77)
0(21) 1320 (1) —4442 (1) 3356 (2) 1056 (15)
H(21) 2229 (3) —4363 (2) 3001 (4) 1411 (32)
C(12) 4975 (1) —4339 (1) 2248 (1) 932 (11)
0(12) 6296 (1) —-4919 (1) 2330 (2) 1149 (16)
H(12) 6320 (3) —5819 (2) 2742 (3) 1462 (31)
0(32) 3906 (1) —4858 (1) 2526 (3) 1486 (20)
C(22) 4954 (1) —2964 (1) 1734 (1) 1152 (13)
H(@32) 6055 (3) —2521 (2) 2773 (4) 1300 (32)
H(42) 5031 (4) —~2910 (3) 392 4) 3704 (70)
0(22) 3568 (1) —~2324 (1) 1703 (2) 1092 (16)
H(22) 2623 (3) —~2508 (2) 525 (3) 1267 (30)

C (¢]
Scattering amplitudes (cm x 10-15) 661 577 (2)

Thermal parameter* x 105

P22 B33 B2 B3 B2
404 (6) 1608 (17) 25 (6) 382 (11) —62 (8)
525 (9) 2137 (26) 205 (10) —137(17) —137 (12)
593 (16) 2700 (54) 154 (18) 296 (33) —53(22)
470 (8) 2307 (27) 31 (9) 41 (16) —99 (12)
391 (6) 1873 (21) —12(7) 418 (13) —98 (9)
790 (20) 4723 (88) —172 (19) 701 (42) 168 (32)
905 (22) 2191 (56) 467 (32) 939 (51) —250(26)
440 (8) 2390 (27) 50 (8) 581 (16) 119 (11)
789 (18) 3800 (70) —17 (20) 1205 (40) 49 (27)
520 (6) 1715 (19) 27 (7) 477 (12) 92 (9)
572 (9) 2675 (30) 109 (9) 843 (18) 170 (13)
682 (17) 2873 (53) 110 (17) 797 (33) 153 (23)
741 (11) 4434 (47) 162 (12) 1647 (27) 524 (18)
497 (7) 1847 (21) 9 (8) 532 (13) 69 (19)
848 (20) 3974 (74) —134 (20) 481 (39) —253 (31)

1110 (25) 3037 (70) 448 (35) 2150 (59) 581 (33)
538 (8) 2104 (26) 112 (9) 192 (17) —85(12)
804 (19) 2632 (53) —31 (18) 160 (33) 64 (25)

H
—369 (2)

(Amplitudes of atoms of the same chemical element were constrained to be equal. That of carbon was not varied.)
* Coefficients in the expression f1142+ f22k2 4+ 3312 + 2f12hk 4+ 21381+ 2f23k1 .
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H(11)-O(11)-C(11)~0(31) -300)
H(12)-0(12)-C(12)-0(32) —40(2)
0(21)-C(21)-C(11)-0O(31) ~56(2)
0(22)-C(22)-C(12)-0(32) —29 (2)

The manner in which the molecules are linked by
hydrogen bonds is shown in stereo in Fig. 3 (the
aliphatic hydrogen atoms have been omitted for
clarity). The shortest, strongest links are from the

LEFT EYE MOLECULE 1

GLYCOLIC ACID

MOLECULE 2

LEFT EYE

GLYCOLIC ACID: DIRECT NEUTRON DIFFRACTION DETERMINATION

carboxyl groups as donors to the a-hydroxy oxygen
atoms of the same type of molecule, O(11)-H(11)- -
O(21)and O(12)-H(12)- - - O(22),forming infinite strings
of hydrogen-bonded equivalent molecules along the
screw axes. These strings are cross-linked by somewhat
weaker hydrogen bonds from the a-hydroxy groups as
donors to carbonyl type oxygen atoms of the carboxyl
group of the other molecular type as acceptor, O(21)—
H(21)---0(32) and O(22)-H(22)- - -O(31). The result

GLYCOLIC ACID

MOLECULE 1 RIGHT EYE

H21)

L7y, or2n

GLYCOLIC ARCID

MOLECULE 2 RIGHT EYE

Fig. 1. Stereoscopic drawings of the two crystallographically distinct molecules of glycolic acid and the atoms (unshaded in the
drawing) of neighboring molecules to which they are hydrogen bonded. Atoms are represented by ellipsoids enclosing 50%
of normally distributed thermal displacements, The viewing direction is 25° from the normal to the plane of the carboxyl group.
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Molecule 1 ( , Molecule 2 )

Hy) \

1
,
(022)

Fig.2. Bond angles (degrees) in glycolic acid. The least-squares standard errors (degrees x 10-2) are given in parenthesis.

LEFT EYE

RIGHT EYE

Fig. 3. Stereoscopic drawings showing the linking of molecules in glycolic acid by hydrogen bonds. The aliphatic hydrogen atoms
have been omitted for clarity.

is a loose three-dimensional hydrogen-bonded’network,
in which the smallest closed loops involve parts of six
molecules.

The usual inverse correlation between the O-H and
the H---O or O-H---O distances is clearly evident,
and the shorter O---H distances occur in the more
nearly linear links. Table 3 shows these correlations.

Atherton & Whiffen (1960) have pointed out that there
is simulated orthorhombic symmetry in the electron
spin resonance (e.s.r.) spectrum ascribed to glycolyl
radicals produced by y-irradiation of glycolic acid. The
origin of this ‘extra’ symmetry is illustrated in Fig. 4,
which shows a projection along b of the B-centered
cell in which b and ¢ are common to the quoted mono-
clinic cell and new A is 2a+c¢; the length of A is 16-24

A and the angle to ¢ is 89-21°. It is clear that some pairs
of molecules of the two types may be approximately
interconverted as though by the operation of screw
axes, and others as though by the operation of glide
planes, parallel to the pseudo-orthorhombic direc-
tions. For example, the molecule designated in the
Figure (2, —0-37) is related approximately to molecule
(1, —0-32) as though there were a twofold screw axis
parallel to c¢. However, this operator does not convert
molecule (1, —0-32) into (2/, —0-13); these latter are
approximately related as though there were a glide
plane parallel to the bc plane.

The presence of pseudo-symmetry led Atherton &
Whiffen to conclude that the planes of the O-C - (H)-C
part of the glycolyl radicals of both crystallographic
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types are parallel or antiparallel to each other and per-
pendicular to ¢, and that the same description would
hold for the correspondmg parts of the host molecules.
This erroneous conclusion arose, apparently, because
in all the e.s.r. measurements the direction of the
magnetic field lay in thé symmetry plane or in one of
the pseudo-symmetry planes; hence the spectra of at

least two radicals were observed throughout as coin-
cident.

Thermal motion

In the drawings of Fig. 1, the atoms -are represented
by ellipsoids enclosing 50% of normally distributed
thermal displacements. These drawings suggest that:
the molecules undergo oscillation and libration as
nearly rigid bodies restrained by the hydrogen bonds.
A computer program written by Johnson (1967) was
used to analyze the motion on the basis of the theory
of rigid-body motion of Schomaker & Trueblood
(1968), in which the motion is described in terms of
three tensors of the second rank: T, describing trans-
lational motion, L, describing librational motion, and
S describing the interaction of translation and libra-

GLYCOLIC ACID: DIRECT NEUTRON DIFFRACTION DETERMINATION

tion. The two hydrogen atoms attached to oxygen
atoms were excluded from the rigid bodies, since their
displacements are substantially affected by internal
rotation about the C-O single bonds. The thermal
parameters of the aliphatic hydrogen atoms were first
reduced by estimated values of their internal vibra-
tional mean-square amplitudes, deduced from the
normal modes (Shimanouchi & Suzuki, 1962) of the
methylene chloride molecule; these are* 0-00578 A2
along, and 0-01369 A2 perpendlcular to, the C-H bond.
The fit of the rigid-body model to the observed thermal
displacements is considered to be quite satisfactory for
both molecules: the standard errors of fit are 0-0015
and 00016 A2 for molecules 1 and 2 respectively,
considering only the seven atoms included in the rigid
bodies. The largest principal-axis components of the
residual tensors are 0-0037 and 0-0031 A2 respectively.

As shown by Schomaker & Trueblood (1968), the
result of the rigid-body analysis may be visualized as

* Computed with a program by M. D. Danford of this
Laboratory. The program is a modification of one reported by
Schachtschneider (1962).

Table 3. Distances and angles for the hydrogen bonds
Errors in the least-significant digits appear in parenthesis. No thermal-motion corrections have been made.

Atom numbers in

O-H: -0 link O-H
ay - A 219 1:003 (2) A
(12) (12) (227 - 1-001 (2)
@21 21 (32%) 0-970 (3)
(22) (22) 319 0-971 (3)

O-H---0

Distance

H---O O-H--+0 angle
1646 ) A 2647 () A 1755 (3)°
1-640 (2) 2:638 (2) 1752 (2)
1774 (3) 2:696 (2) 1576 (2)
1-753 (3) 2714 (2) 169-7 (2)

Flg 4. PI'O]ECHOD along B of the pseudo-orthorhombic B-centeted cell for which A=2a+c of the monoclinic cell and B=b,
C=c. The molecules are labeled in parenthesis by molecule type and z coordinate,
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Table 4. Interpretation of the rigid-body thermal motion of glycolic acid in terms of independent simple motions

Helical motions
(about non-intersecting axes)

R.m.s. amplitude (radians) 0-187
Pitch,® (A.radian-1) 0-000
Direction? J=1 —0-251
2 0-940
3 —0-231
Center of reaction,¢ (A) 0-168
Axis displacements,? (A) J=1
2 0-011
3 0072
Reduced translation®
R.m.s. amplitude (A) 0-199
Direction? J=1 0-246
2 0-034
3 —0-969

a Based on the arbitrary constraint trace S=0.

Molecule 1 Molecule 2
Axis K Axis K
2 3 1 2 3
0-091 0-046 0-186 0-087 0-047
—0-192 0-768 0075 —0-528 0-636
—-0612 -0750 0-437 0793 —0-423
—0-339 —-0-038 —0-894 0433 —-0-112
—-0-714 0-661 0-095 0-427 0-899
—0-652 0-332 —-0-027 0-667 —0-075
—0-146 0-579 0:057 —-0-197
-0-179 0-025 —0-385
—-0-305 0-025 -0-115

0-167 0-151 0-201 0-178 0-169
0-968 0-044 0-661 0-666 0-346
0-036 —0-999 —-0-096 0-532 —0-841
0-247 —0-025 —-0-744 0-523 0-416

b Columns are direction cosines of principal axis K with respect to Cartesian axes J parallel to a, b and c* respectively.
¢ Referred to the Cartesian system of (b) with origins at atom C(11) for molecule 1 and C(22) for molecule 2. The term ‘center of

reaction’ is defined by Brenner (1967).

d Columns are components of displacement of helical axis K along helical axes J from center of reaction.

e Defined in equation (20) of Schomaker & Trueblood (1968).

the superposition of six independent simple motions:
three helical librations about a set of unique non-
intersecting axes parallel to the principal axes of li-
bration, and three translations. Parameters of these six
independent motions are listed in Table 4 and are
presented pictorially in Figs. 5 and 6. The wedge-cut
cylinders in Fig. 6 have angles proportional to the
respective principal root-mean-square librational am-
plitudes L}{? and lengths proportional to the asso-
ciated screw-translations Sy;/L}/2. Also shown is the
reduced translation ellipsoidt (50% probability sur-
face) in correct orientation with respect to the mole-
cule. For comparison, the observed atomic displace-
ment ellipsoids for C(11) and C(12) are shown.

It is of interest to examine the characteristics of the
helical motions in relation to the inertial parameters
of the molecules and the disposition of restraining
hydrogen bonds. Helical axis No. 1, of largest angular
amplitude, lies about 9 and 4° from the line connecting
the a-hydroxyl oxygen atom to the carboxyl carbon
atom [the O(2)---C(1) directions] of the two mole-
cules. This direction appears to be one of low moment
of inertia; the corresponding libration only slightly
distorts the two strong hydrogen bonds O(1n)-H(in)

1 For the purpose of illustration, the reduced translation
tensor is taken as

3
T'ry=Tis— 3 SkrSks/Lrgx, 1,J=1,2,3
K=

which differs from equation (20) of Schomaker & Trueblood
(1968) by subtraction of the quantities Si12/Ly1 from the diag-
onal elements, in keeping with the notion of screw motion. In
evaluating these quantities, the recommended constraint
trace S=0 was applied.

-+-0'2n) and O(2n)---H'(1n)-O'(1n) (n=1,2 refers
to the molecule number) which lie in chains parallel
to b, and produces mostly bending distortion of the
two remaining, weaker, cross-linking hydrogen bonds.
This placement is thus consistent with the relatively
large angular amplitudes and small screw components
of this libration mode. In contrast, rotations about
axes No.2 and No. 3, with larger moments of inertia,
produce marked distortions of all hydrogen bonds, and
the corresponding libration amplitudes are smaller.
Rotation about axis 2 produces marked stretching of
hydrogen bonds O(2n)-H(2r)- - -O'(3m) and O(3n)- - -
H'(2m)-O'2m) (n#m=1,2); this distortion in both
bonds is reduced by the left-handed helical component.
Rotation about axis 3 appears to produce some stretch-
ing distortion of all four hydrogen bonds formed by
each molecule, and the distortion of each seems to be
relieved by the right-handed helical component.*

Since the rigid-body analysis of thermal motion
gives a satisfactory fit and has a reasonable interpre-
tation, the libration tensors were judged to be suffi-
ciently reliable to be the basis for estimating bond
length corrections. These corrections were computed
from the expression

S=|Sol{1 + (4n2)~! [trace (2n2Lg)
—Ste(2n2L)gSo/SteS,l}

where S represents the mean separation of two atoms,
S, is the interatomic distance vector, expressed in

* Although the screw components are undetermined to the
extent of the arbitrary constraint trace S=0, it is interesting
that they appear to make sense in relation to the structure.
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terms of oblique crystal coordinates (contravariant
components), L is the matrix of the libration tensor,
also expressed in contravariant componentst and g is

t The expression of L in terms of crystal oblique coordinates
was chosen for ease in programming the correction, since now
272L enters computationally as B does in the riding correction
(Busing & Levy, 1964). The components of L in the crystal
oblique coordinates have formal dimensions radians2.A -2,
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the matrix of the metric tensor whose elements are
a; . a;, the scalar products of the unit-cell translations.
This expression is a generalization of one derived by
Busing & Levy (1964) and equivalent to the diadic
expression, equation (22), of Schomaker & Trueblood
(1968). In the case of the bonds from carbon to ali-
phatic hydrogen atoms, an additional correction was
made for the internal motion, considering that in each

GLYCOLIC RCID

HOLECULE 1

GLYCOLIC ACID

MOLECULE 2

Fig.5. Stereoscopic drawings of the molecules in glycolic acid showing the non-intersecting axes of helical libration, The centers
of reaction lie at the centers of the octagons,



R. D. ELLISON, C. K. JOHNSON AND

REDUCED TRANSLATION
ELLIPSOID

MOLECULE 1

H. A. LEVY 343

REDUCED
TRANSLATION
ELLIPSOID

MOLECULE 2

Fig.6. Pictorial presentation of the results of the analysis of thermal displacement in terms of rigid-body motion. The non-
intersecting libration axes are shown in the same orientation as in Fig. 5, but on an enlarged scale. The helical cut shows the
angular and translational components of the helical libration, with the proper sense. The ellipsoids represent the reduced trans-
lation tensor and, for comparison, the thermal ellipsoids of C(11) and C(12).

Table 5. Rigid body and internal vibration parameters for glycolic acid

ij 11 22
Libration tensor, 2rn2L# x 104, crystal oblique coordinates
Molecule 1 30 57
Molecule 2 38 52
Internal vibration, g% x 104
H@31) 2590 22:45
H(41) 40-57 2370
H(32) 24-87 21-60
H(42) 40-91 24-18

33 12 13 23

28 -19 25 —-15

14 —-24 15 -5
5346 —516 22-12 0-76
26-50 —0-46 16-54 -3:76
39-42 —6-49 4-69 —613
2979 —0:06 21-28 0-97

Table 6. Intramolecular interatomic distances A, in glycolic acid and their corrections for thermal motion

Molecule 1 Molecule 2 Model for
From To Uncorrected* Corrected Uncorrected* Corrected correctiont
C(1) O(1) 1-314 (1) 1-329 1-310 (1) 1-323 ML
0(3) 1-205 (1) 1227 1-202 (2) 1-225 ML
C(2) 1-503 (1) 1:514 1-505 (1) 1-519 ML
C(2) 0(2) 1-403 (1) 1:420 1-406 (2) 1-420 ML
H(3) 1-081 (3) 1-115 1-084 (2) 1117 ML +1V
H@4) 1-080 (3) 1-115 1-083 (3) 1-118 ML +1V
o(1) H(1) 1-003 (2) 1-007 1-:001 (2) 1011 RM
0(2) H(2) 0970 (3) 0-998 0971 (3) 0-988 RM

* Least-squares standard error in least-significant digit given in parentheses.
+ ML =molecular libration; IV =internal vibration; RM =riding model.

case the hydrogen atom rides on a carbon atom; the
expression for the corrected value is

S'=S5+(4n?)7|S, [trace (Bg)—SigPeSs/SigSol

where B is the tensor for the internal motion, again
expressed in doubly contravariant components relative
to the axes. The tensors involved are listed in Table 5.
In the case of the O-H bonds, which are influenced
by internal rotations about C-O, the empirical riding-
model correction (Busing & Levy, 1964) seems to be
the best available. The corrected distances are listed
in Table 6.

Computations for this work were carried out on

IBM 360/75 and CDC 1604A electronic computers.
Of the programs used, those included in the World
List of Crystallographic Computer Programs (Shoe-
maker, 1966) and their accession numbers are as
follows:

Absorption correction 523 (a)
Statistical analysis of data ORSTAT 496
Fourier synthesis XFOUR () 391
Least-squares refinement XFLS 389
Structure factor table EDIT 393
Structure drawings ORTEP 387
Distances and angles ORFFE (c) 363
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(a) Modified for the CDC 1604A by the authors.
(b) Modified for the IBM 360/75 by G. Brunton of
this Laboratory.

(¢) Modified for the IBM 360/75 by C. K. Johnson.

The multiple implication and superposition diagrams
were prepared using programs written during. a pre-
vious study; the functions evaluated are described in
the report of that work (Ellison & Levy, 1965). Pseudc
normalized structure factor magnitudes for the

‘squared scattering amplitude’ structure were calculated

using programs written by the authors for this investi-
gation. Analysis of the thermal motion made extensive
use of a program written by Johnson (1967).
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The Molecular and Crystal Structure of Glycollic Acid
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Laboratorium voor Kristalchemie, Rijksuniversiteit, Catharijnesingel 51, Utrecht, The Netherlands

(Received 3 March 1970)

The structure of glycollic acid has been determined by X-ray analysis, by a direct method. The structure

crystallizes in the space group P2;/c with unit-cell dimensions: a=9-061, b=10-562, ¢="7-828 A

and

ﬁ 116-41°, with Z=8. The structure refined to R=0-041. The carboxyhc hydroxyhc hydrogen bonding,
in which the alcoholic hydroxylic oxygen atom serves as.an acceptor, is unusual; the expected dimers

were not found.

Introduction

Glycollic acid has been examined as part of a pro-
gramme of investigation of carboxylic acids. The prob-
Present address: Netlierlands Foundation for Chemical Re-

search, Laan van- Meerdervoort 123 A, The Hague, Nether-
lands,

lem was whether glycollic acid in the crystal structure
was likely to form dimers, probably with non-hydro-
gen-bonded hydroxyl groups, or a structure with
hydroxyl-carbonyl coupling. An infrared analysis gave
no reason to assume that there might be non-hydro-
gen-bonded hydroxyl groups in the structure (Kanters,
Kroon, Peerdeman & Vliegenthart, 1969), and the



